The Moving Average Research King: Valeriy Zakamulin

The Moving Average Research King: Valeriy Zakamulin

April 22, 2016 Tactical Asset Allocation Research
Print Friendly

Some weekend reading for trend-followers who want to question their beliefs.

Valeriy Zakamulin is an animal when it comes to generating research on moving averages. We’ve done a lot of the same work, but we’re too lazy to tabulate the results in an academic paper format.

king of ma
The king of moving average research.

 

Check these papers out:


 

Revisiting the Profitability of Market Timing with Moving Averages

In a recent empirical study by Glabadanidis (“Market Timing With Moving Averages”  (2015), International Review of Finance, Volume 15, Number 13, Pages 387-425; the paper is also available on the SSRN and has been downloaded more than 7,500 times) the author reports striking evidence of extraordinary good performance of the moving average trading strategy. In this paper we demonstrate that “too good to be true” reported performance of the moving average strategy is due to simulating the trading with look-ahead bias. We perform the simulations without look-ahead bias and report the true performance of the moving average strategy. We find that at best the performance of the moving average strategy is only marginally better than that of the corresponding buy-and-hold strategy. In statistical terms, the performance of the moving average strategy is indistinguishable from the performance of the buy-and-hold strategy. This paper is supplied with R code that allows every interested reader to reproduce the reported results.

The current version of the paper on the SSRN                                    Download the R code and data


A Comprehensive Look at the Empirical Performance of Moving Average Trading Strategies

by Valeriy Zakamulin, working paper
Despite the enormous current interest in market timing and a series of publications in academic journals, there is still lack of comprehensive research on the evaluation of the profitability of trading rules using methods that are free from the data-snooping bias. In this paper we utilize the longest historical dataset that spans 155 years and extend previous studies on the performance of moving average trading rules in a number of important ways. Among other things, we investigate whether overweighting the recent prices improves the performance of timing rules; whether there is a single optimal lookback period in each trading rule; and how accurately the trading rules identify the bullish and bearish stock market trends. In our study we, for the first time, use both the rolling- and expanding-window estimation scheme in the out-of-sample tests; study the performance of trading rules across bull and bear markets; and perform numerous robustness checks and tests for regime shifts in the stock market dynamics. Our main results can be summarized as follows: There is strong evidence that the stock market dynamics are changing over time. We find no statistically significant evidence that market timing strategies outperformed the market in the second half of our sample. Neither the shape of the weighting function nor the type of the out-of-sample estimation scheme allows a trader to improve the performance of timing rules. All market timing rules generate many false signals during both bullish and bearish stock market trends, yet these rules tend to outperform the market in bear states.

The current version of the paper on the SSRN

Market Timing With a Robust Moving Average

by Valeriy Zakamulin, working paper

In this paper we entertain a method of finding the most robust moving average weighting scheme to use for the purpose of timing the market. Robustness of a weighting scheme is defined its ability to generate sustainable performance under all possible market scenarios regardless of the size of the averaging window. The method is illustrated using the long-run historical data on the Standard and Poor’s Composite stock price index. We find the most robust moving average weighting scheme, demonstrates its advantages, and discuss its practical implementation.

The current version of the paper on the SSRN


Anatomy of Market Timing with Moving Averages​

by Valeriy Zakamulin, working paper
The underlying concept behind the technical trading indicators based on moving averages of prices has remained unaltered for more than half of a century. The development in this field has consisted in proposing new ad-hoc rules and using more elaborate types of moving averages in the existing rules, without any deeper analysis of commonalities and differences between miscellaneous choices for trading rules and moving averages. In this paper we uncover the anatomy of market timing rules with moving averages. Our analysis offers a new and very insightful reinterpretation of the existing rules and demonstrates that the computation of every trading indicator can equivalently be interpreted as the computation of the weighted moving average of price changes. This knowledge enables a trader to clearly understand the response characteristics of trading indicators and simplify dramatically the search for the best trading rule. As a straightforward application of the useful knowledge revealed by our analysis, in this paper we also entertain a method of finding the most robust moving average weighting scheme. The method is illustrated using the long-run historical data on the Standard and Poor’s Composite stock price index. We find the most robust moving average weighting scheme and demonstrates its advantages.


Note: This site provides no information on our value investing ETFs or our momentum investing ETFs. Please refer to this site.


Join thousands of other readers and subscribe to our blog.


Please remember that past performance is not an indicator of future results. Please read our full disclaimer. The views and opinions expressed herein are those of the author and do not necessarily reflect the views of Alpha Architect, its affiliates or its employees. This material has been provided to you solely for information and educational purposes and does not constitute an offer or solicitation of an offer or any advice or recommendation to purchase any securities or other financial instruments and may not be construed as such. The factual information set forth herein has been obtained or derived from sources believed by the author and Alpha Architect to be reliable but it is not necessarily all-inclusive and is not guaranteed as to its accuracy and is not to be regarded as a representation or warranty, express or implied, as to the information’s accuracy or completeness, nor should the attached information serve as the basis of any investment decision. No part of this material may be reproduced in any form, or referred to in any other publication, without express written permission from Alpha Architect.




About the Author

Wesley R. Gray, Ph.D.

After serving as a Captain in the United States Marine Corps, Dr. Gray received a PhD, and was a finance professor at Drexel University. Dr. Gray’s interest in entrepreneurship and behavioral finance led him to found Alpha Architect. Dr. Gray has published three books: EMBEDDED: A Marine Corps Adviser Inside the Iraqi Army, QUANTITATIVE VALUE: A Practitioner’s Guide to Automating Intelligent Investment and Eliminating Behavioral Errors, and DIY FINANCIAL ADVISOR: A Simple Solution to Build and Protect Your Wealth. His numerous published works has been highlighted on CBNC, CNN, NPR, Motley Fool, WSJ Market Watch, CFA Institute, Institutional Investor, and CBS News. Dr. Gray earned an MBA and a PhD in finance from the University of Chicago and graduated magna cum laude with a BS from The Wharton School of the University of Pennsylvania.